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SYMBOLS

mean skin friction coefficient

height of the roughness element

Mach number

correlation number defined by equation (11)

static pressure

gas constant in perfect gas law

Reynolds number based on boundary layer momentum
thickness and flow conditions which exist just
outside of the boundary layer

Reynolds number based on roughness height and flow
conditions which exist just outside of the boundary
layer

critical roughness Reynolds number - based on
roughness height and flow condition which exist

within the boundary layer at a distance k from
the wall

enthalpy function

absolute temperature

velocity component tangential to the wall
coordinate tangential to the wall
coordinate normal to the wall

pressure gradient parameter

ratio of specific heats,'x= l.4
similarity variable from reference (9)

boundary layer momentum thickness
coefficient of viscosity

kinematic viscosity
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INTRODUCTION

It is often desirable when conducting aerodynamic
experiments to insure that the boundary layer flow over the
body is turbulent, or to insure that transition from laminar
to turbulent flow occurs at a specified point on the body.
One method of inducing premature boundary layer transition
on a model is by applying roughness to the surface of the
body. In this report a method is presented which allows the
determination of the minimum height of surface roughness
required to produce premature boundary layer transition,
provided a certain parameter is assumed as transition
criterion. The method may be applied to compressible laminar
boundary layer with pressure gradients and heat transfer at
the surface.

In the present method it is assumed that a criterion
for roughness affected boundary layer transition can be
formed by defining a critical roughhess Reynolds number,

Rkk = ?h%ﬁéﬁ , where k is the height of the roughness element
and subscript k indicates the flow properties in the boundary
layer a distance k from the surface. Thus, if the parameter
Rkk is smaller than some experimentally determined critical

value, no effect will be made on the boundary layer transi-
tion location. Von Doenhoff and Horton (reference (1)) and
Smith and Clutter (reference (2)) have satisfactorily
correlated subsonic flow transition measurements by utilizing
the concept of a critical roughness Reynolds number as
defined in this report. 1In an attempt to correlate results
from supersonic boundary layer transition experiments,
several different parameters have been proposed by various
investigators, references (3), (4), (%), (6), (7), and (8).
In the reports by Braslow, Knox, and Horton (reference (7))
and Jackson and Czarnecki (reference (8)), low supersonic
boundary layer transition results were correlated by using
the critical roughness Reynolds number Ricj - This correlation

appeared quite satisfactory. Because of simplicity and lack
of more reliable supersonic boundary layer transition results,
the criterion for roughness induced boundary layer transition

has been assumed to be R » the critical roughness Reynolds
number.
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In order to know the flow properties within the
boundary layer which are necessary to form the critical
roughness Reynolds number, the velocity and enthalpy
profiles for a compressible laminar boundary layer presented
by Cohen and Reshotko in reference (9) have been utilized in
the development of the method. The roughness height causing
premature transition is then presented in graphical form as
Rey, a Reynolds number based on roughness height and flow
properties which exist just outside of the boundary layer at
the location at which transition is to be initiated, versus
Reg, the boundary layer momentum thickness Reynolds number.

DEVELOPMENT OF METHOD

Based upon the assumption that the criterion for prema-
ture boundary layer transition is the existence of a critical
roughness Reynolds number Rkk’ the following method for the

determination of the critical roughness height can be
developed. The critical roughness Reynolds number is
defined as:

_ fuuilk
Rey P (1)

Using the perfect gas law allows the density to be expressed

in terms of the pressure and temperature so that equation (1)
may be written as:

Q _ ,P"_u.l&
= —
L QTk /'(L (2)
Upon writing all of the quantities on the right-hand side

of equation (2) in ratio form with the exception of the gas
constant, R, equation (2) becomes:

PHM* “ﬁﬂu.gm
Re=R.,. —
ke eg T;"/T;. B‘/f*'- (3)

where Reg is the momentum thickness Reynolds number based

on flow properties just outside of the boundary layer.
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The assumption that the pressure across the boundary
layer is constant makes the pressure ratio, Pt/ e 1N
equation (3), unity. Also, by the use of Sutherland's formula,
the viscosity ratio can be expressed in terms of the tempera-
tures T, and Ty as:

(Ta) |+ 198 6/T

The substitution of equation (4) into equation (3) along
with the assumption that Pg/P‘-_-I, yields

R, R, —Lus bo( M1+ )
o () o

If the temperature profile expression given in reference (9)
is utilized, the temperature ratio can be expressed in
terms of the velocity ratio and an enthalpy ratio as:

(6)

where:

Substituting equation (6) into equation (5) and solving
for the ratio Ree/Rk gives:

o T (s LI
"/u.{("'UMe |+5r°(%)] R }%(7)
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To calculate a value for the ratio Ree/Rkk from equation (7),
it is necessary to specify values for Uy the velocity, and

Sk, the enthalpy function, at a point in the boundary layer
at a distance k from the wall. This implies that velocity
and temperature profiles through the boundary layer must be
specified. Cohen and Reshotko (reference (9)) have presented
velocity and enthalpy profiles for the laminar compressible
boundary layer including the effect of both heat transfer at
the wall and a pressure gradient impressed on the boundary
layer by the external flow. These velocity and enthalpy
profiles are presented as a function of a non-dimensional
similarity parameter71.

Since equation (7) involves the parameter k/6, and
since it is desirable to express the physical distance from
the wall k in terms of the non-dimensional similarity
parameter v, it is desirable to determine the expression
for k/6 in terms of . An expression for k/© can be
obtained by utilizing the relations presented in references
(9) and (10) foryand ©, and can be written as:

L Yy S [HS_Ui%() khn (8)
| il

By the use of equations (7) and (8), a value for the
critical roughness Reynolds number based on flow properties -
evaluated just outside of the boundary layer can be determined.
Hence, if the unit Reynolds number of the flow just outside
of the boundary layer is known, a value for the critical

roughness height required to produce premature boundary layer
transition can be determined.

CALCULATIONS AND PRESENTATION OF RESULTS

The velocity and enthalpy profiles presented in
reference (9) allows a value for k/6 to be calculated for any
specified values of 7y and Mach number from equation (8).
This value of k/6 can be substituted into equation (7) along
with the appropriate values of “%ﬂ&‘and Sk that correspond to

that value of‘q¥ that has been specified. Further, substitu-
o

tion of values r and Te allows a value for Re./R to
be calculated. Ve ¢ e/ Kk

4
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The velocity and temperature profiles given in reference
(9) are identified by a wall enthalpy function, Sy, and a
pressure gradient parameter 5 . The wall enthalpy function
is defined as:

Tw
Sw':T;'"'I (9)

A method for obtaining a value for > will be discussed under
the section entitled "General Application of Method."
Velocity and temperature profiles are presented in reference
(9) for five values of S, in the range -1< S, < 1. The

S_ = -1 corresponds to a wall temperature of absolute zero
while the Sw = 1 corresponds to a wall temperature twice

the free stream stagnation temperature. For each of five
values of S, the velocity and enthalpy profiles are
presented for a range of values of > from 2 to less than
-0.1. The ﬁ>= 2 represents an infinitely favorable pressure
gradient, while(5<D represents adverse pressure gradients.

A value for Rek/Rkk is obtained from the following
equation using the calculated value for the ratio Reg/Rkk.

Rey - Reg. &
Qkk Q&h 6 (10)

This procedure for calculating values of Rek/Rkk was carried

out using a high-speed digital computer. Velocity and
enthalpy profiles presented in reference (9) for all five
values of Sy, were used. For each value of S,, profiles for
a large range of values of > representing both favorable
and adverse pressure gradients were utilized. Values °f'7k
were chosen from 0.1 to the value corresponding to the
outer edge of the boundary layer for increments of tho.l
These calculations were carried out for Mach numbers from

O to 5 in increments of 1 Mach number. Because Sutherland's
formula was used to represent the viscosity temperature
relationship, it can be seen from equation (7) that Ree/Rkk
is dependent also upon Te. It will be shown later,
however, that Ree/Rkk and hence Rek/Rkk is insensitive

to variations of Te so that all of the calculations to be
presented were performed for a constant value of Te = 5S00°R.
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The results of these calculations are presented in
graphical form as a family of curves of constant Mach
number plotted as Ree/Rkk versus Rek/Rkk' A separate

chart is presented for each combination of values of S,

and P used in the calculations. These charts are presented
as Figures 1. The upper limit on the values of Re?/Rkk
presented in these figures was dictated by the cholce

of n,= 0.1 as the minimum value of for which the calcula-
tions were performed. Since the correlation between the
roughness height required to produce premature transition
and a critical roughness Reynolds number is valid only for
roughness elements within the boundary layer, the calcula-
tions were performed only for values of yl equal to or less
than that value which corresponds to the ‘boundary layer
thickness. This fact dictates the lower limit on the
values of Ree/Rkk.

To illustrate the insensitiveness of Rek/Rkk to

variations of Te, calculations of the type previously
indicateg have been performed letting Te vary from 100°R

to 1,000"R. The calculations were performed for Sy = 0,
and ﬁ= 0. The results of the calculations are presented
in Figure 2 as a plot of Rek/Rkk versus Te with a family of

curves of constant values of Ree/Rk . These curves are for
a Mach number of 5. k

Although curves have been presented for Mach numbers
from O to 5 sufficient data are not currently available to
indicate positively that the correlation between roughness
height and critical roughness Reynolds number remains valid
at hypersonic Mach numbers.

It is known, however, that as the Mach number increases,
the distance between the roughness elements and the point of
transition increases where the height of the ‘roughness
elements used is equal to the critical height. This was
pointed out, for instance, by Van Driest and Blumer (refer-
ence (6)). Therefore, at hypersonic Mach numbers, it may
become difficult to produce transition in the near vicinity
of the roughness elements. Even though premature transition
can be produced by the application of roughness elements, it

usually occurs far downstream of the location of the
roughness.
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GENERAL APPLICATION OF METHOD

To apply the results of the method presented, it is
necessary to specify values for S, and , the enthalpy
and pressure gradient parameters, that 'correspond to the
point at which the roughness elements are to be located.
The value for S, can be determined from equation (9).
In order to determine the value of @ , it is more convenient
to relate it to the correlation number n defined in reference
(10). The relation between 5> and n is given graphically in
Figure 3 as a plot of ﬁ>versus n. Five curves, one for
each of the five values of S, are presented. The value of
n corresponding to the point of interest can be calculated
from the relation given in reference (10) as:

8T\ du
T 12)7; o (11)

This expression can be written in a more convenient form
for the purpose of this report as:

Values for S, and E>are now available which will allow the
correct chart of Rek/Rkk versus Ree/Rkk to be found. The

relation between Rek/Rkk and Ree/Rkk is specified by knowing

the local Mach number which identifies the correct curve
on the chart.

At this point it is necessary to choose the value for
the critical roughness Reynolds number, Rg,. A review of
the experimental investigations reported ik references
(4), (5), (6), and (7), indicates that a reasonable value
for the critical roughness Reynolds number required to
initiate premature transition is approximately 700 if
three-dimensional roughness elements are used. To move
transition to the location of the roughness, a value
slightly larger than 700 should be used for the lower super-
sonic Mach numbers. As was previously mentioned in the
section entitled "Calculations and Presentation of Results,"
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it may be difficult at the higher supersonic Mach numbers to
shift transition to the roughness location. It is a direct
process utilizing the proper chart in Figures 1 to obtain
a value for Rey once an appropriate value for Rkk has been

chosen. Finally, a value for the roughness height is
obtained by dividing the value of Rej by the local unit
Reynolds number.

The application of this method to a specific case
will rarely involve values of S,, >, and Me which correspond
exactly to any of the values of these quantities presented
in Figures 1. It will therefore be necessary to interpolate
using the information in Figures 1 to obtain a value for
the roughness height which applies to the specific case.
For the local Mach number, Me, a graphic interpolation
can be performed, while for the quantities S_ and £ ,
numerical interpolation is required. From FYgure 4, which
is a typical plot of Rek/Rkk versus S, it can be seen that

a linear interpolation should be sufficiently accurate to
determine Rey/Rk, between any two adjacent values of S
presented in Figbres l. Figure 4 has been presented for a
constant local Mach number of 4 and Ree/Rkk of 1. Figure 5

is the same type of plot as Figure 4 with the abscissa
changed from S, tojs and the curves being a family of
constant values of S,. Again it can be seen from this
figure that linear interpolation is sufficient except
perhaps in certain regions of adverse pressure gradients.
Figure 6 shows the variation of Rek/Rk with local Mach

k
number. These curves are presented as a family for constant
values of S,. All of the curves in Figure 6 are forf= 0
(zero pressure gradient). Since curves are presented in
Figures 1 for every Mach number between O and 5, it can be
seen from Figure 6 that a linear interpolation should be
sufficiently accurate to determine values for Rek/Rk at
Mach numbers not specified. k

Since the width of the roughness band in the stream-
wise direction does not appear to be a critical parameter, it

is suggested that for convenience a narrow band of roughness
be used.
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APPLICATION OF METHOD OF A CONE

Since a sharp-nosed cone is quite often of interest
to investigators, it was deemed worthwhile mentioning the
application of the present method to this specific bod{
shape. The value of S, can be computed from equation (9)
and since a cone is a zero pressure gradient body the value
for ® will be zero. The remaining information needed to
enable the determination of the required roughness height to
produce premature transition is a value for the local flow
properties on the cone just outside of the boundary layer,
and the boundary layer momentum thickness, 6. The local
flow properties can be obtained from any one of numerous
references such as reference (11). The boundary layer
momentum thickness for a cone is given in terms of the
momentum thickness on a flat plate obtained at the same
local Mach number, local Reynolds numbers, and wall to
local temperature ratio by the following simple relations:

- l
Ocone = \ﬁs'eflat plate (13)

This equation can be readily developed by applying Mangler's
transformation to flow over a flat plate. The flat plate
momentum thickness is given by:

5 CgX
flat plate 2

(14)

which is obtained by integrating the momentum equation.

In equation (14) Cgp is the mean skin friction coefficient,
and x is the distance measured along the plate from the
leading edge to this point of interest. The information in
Figures 1 can be used to determine a value for the
necessary roughness height after a value of © and hence Reg
for the cone has been determined.
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CONCLUSION

A method has been presented for determination of the
minimum height of surface roughness that causes premature
laminar boundary layer transition. The method is based
on the assumption that the height of the roughness
necessary to accomplish this can be expressed as a
critical roughness Reynolds number. The magnitude of the
critical roughness Reynolds number has been determined
experimentally by several different investigators and is
quite consistent for the lower supersonic Mach numbers.
Only a small amount of data is available for higher super-
sonic Mach numbers, and whether the critical roughness
Reynolds number as a transition criterion holds, and if so,
what its value is in the higher speed range, can only be
determined by further experimentation. Since the charts
which are presented in this report are independent of the
value of the critical roughness Reynolds number, they
may be used for any value of it.

10
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